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METHOD OF NUMERICAL SOLUTION OF THE PROBLEM OF IMPRESSING A MOVING STAMP 

INTO AN ELASTIC HALF-PLANE, TAKING HEAT GENERATION INTO ACCOUNT* 

I.K. LIFANOV and A.V. SAAKIAN 

The contact problem of impressing a uniformly moving stamp of arbitrary configura- 

tion into an elastic half-plane is examined in the presence of heat generation be- 

cause of tangential stress. The usual thermal and elastic contact conditions reduce 

the solution of the problem posed to the solution of a system of singular integral 
equations of the first and second kind. Consequently, the unknown functionsinthe 
system possess different kinds of singularities at the ends. A single method of 
numerically solving such equations that is convenient for application on electronic 

computers is proposed and given a foundation. This method is to make the transi- 
tion from a singular integral equation to a system of linear algebraic equations in 

values of the required functions in roots of appropriate Jacobi polynomials. The 
heat flux distribution and their influence on the contact pressure distribution are 

investigated on the basis of the method proposed. 

The contact problem of impressing a stamp moving at a constant velocity along a boundary, 

into an elastic half-plane was first formulated and solved in the monograph /l/. Analogous 

problems were examined in /2,3/ for systems of stamps. However, tangential stresses under 
the stamp that cause heat generation were not taken into account in these papers,as is appar- 

ently essential in real cases. 

To solve problems taking the mentioned effects into account, as well as other problems 

reducing to similar equations, a method of numerical solution of singular integral equations 
of the first and second kind that is convenient for application of electronic computers is 

necessary. For equations of the first kind, such a method was developed in aerodynamics ("the 
method of discrete vortices") by using heuristic considerations and methodological computa- 

tions on an electronic computer /4/. Its mathematical foundation is given in /S-7/. An 
analogous method for equations of the first kind is proposed, without mathematical foundation, 

in the theory of cracks /8/ by using Chebyshev polynomials and giving a higher rate of conver- 

gence than the "method of discrete vortices". The single method proposed below forthenumer- 
ical solution of singular integral equations of the first and second kinds is a generalization 

of the above-mentioned methods. 

1. Let a stamp compressed on a half-plane by a force Pmove along the boundary of the 
elastic half-plane at a constant velocity V,less than the velocity of shear wave propagation 

in the elastic half-plane. Because of dry friction,a quantity of heat proportional to the 

velocity of stamp motion, to the friction coefficient, and to the normal contact pressure/g, 

lo/, is generated in the contact zone. We assume that the stamp dimensions considerably ex- 

ceed the length of the contact zone, whereupon it can be replaced by the half-plane for the 

determination of the stamp temperature. 

We select a fixed U,X,Y, coordinate system and a moving OXY coordinate system rigidly 
" clamped to the stamp and determined by the formulas z = z1 - V,t,y = y,.The heat generation il 

the contact zone results in the appearance of the heat fluxes Q;(z) and Q;(z) directed, re- 
spectively, into the half-plane and the stamp, and connected with the contact pressure P'(X) 
by the relationship 

Q1'(2) + Qz'(x) = CPY,P' (x) (1.1 

where e is the thermal equivalent of the mechanical work, and fi is the friction coefficient. 
According to the Fourier law of heat conduction, we have 

Q;(z)=(- I)%+1 hkT , k=1,2 

where h, and hz are heat conduction coefficients, and T,'and Tz' are, respectively, the half- 

plane and stamp temperatures. The parts of the stamp and half-plane surfaces, not in contact, 
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are assumed heat-insulated. 

We use the results of /II/, where expressions were obtained for the displacementandtemp- 

erature of boundary points of an elastic strip, particularly a half-plane, when lumped forces 

and thermal sources move at the constant velocity V, along its edges. On the basis of the 

superposition principle, expressions can hence be obtained directly for the components ment- 

ioned for distributed forces and heat sources. In dimensionless variables we have 

T1(5,0)=~SlnlE-~lQ~(s)ds+Cz*- s R(E-s)Ql(s)ds (1.3) 

u=+ v'(z, y), T (E)= $ T'(X), 5 = $ 

p(E)=%~~(r), q(E)=%q'(r), Qi(E)=$$Qi’(Z)t i=la 2 

R(u)=& 1 [&-&]e-7SUds 
-m 

x = pceVOaA, v=(3h+ @)a, 

A = 4klkz - (1 + kzz)2, ki2 = 1 - $ , i=l, 2 
z 

Cl2 = xi-21L 
P ’ 

cza = _!!- 
P 

where A and p are Lame) coefficients, p is the density, a, is the coefficient of thermal expan- 

sion, cE is the specific heat of the half-plane material, a is the half-length of the contact 

zone, C,*and C2* are certain, generally infinite,constants. Here and henceforth, if limitsare 

not specified, the integration will be between -1 and 1. 

Because of the assumption made, the temperature of the boundary points of the stamp is 

determined by the formula (C,* is a certain, also infinite, constant) 

(1.4) 

If a harmonic regime, in time, with frequency w is considered instead of the stationary 

regime of the temperature distribution in the stamp and the half-plane, and a wave going to 

infinity is liberated, then by equating the temperature of the stamp (1.4) and the half-plane 
(1.3) in the contact zone, we obtain a thermal contact equation in the limit w-+0: 

SlnIE-sIQI(S)ds--sSR~ -~)Q~(~)ds=SlnI~--sJQz(s)ds 

and a condition for which the infinite constants C 2* and C,*mutually cancel out 

~QdW=~QdsW 

(1.5) 

(1.6) 

We differentiate (1.5) with respect to E and eliminate &(s) by using the condition (1.1). 

We consequently obtain the equation 

(l+h)S$$ds--s$&ds+nS~Q~(s)ds=O 

h = h,lhz, 5 = y$V,alhz 

(1.7) 

Condition (1.6) becomes 

(1.8) 

where the equilibrium condition of the stamp is also used 

S p (s) ds = 1 (1.9) 

Let us turn toanexamination of the elastic contact between the stampandthehalf-plane. 

We have the usual condition /12/ 
u (5, 0) = f (5) - d 
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where f G) is a function describing the base of the stamp, and cl is the dimensionless settle- 
ment of the stamp. We substitute (1.2) into the last condition and we take into account that 

17 (t) = pp (E) in the contact zone. Differentiating the equation obtainedwith respect to 5, we 
will have 

(1.10) 

6 
0 

= 1 + k,? - 2klk, 

kl(l ~ k,‘) ’ 
,,, = kl(1 --A 

’ 

6 _ ncpl (1 + kL’) 

rrA ’ ’ klcl’ 

Therefore, (1.7) and (l.lO), together with (1.8) and (1.9), form a complete systemofsingular 
integral equations in the unknown heat flux Q,(E) and contact pressure l,(E). 

It is convenient to introduce the new unknown functions 

x(E) = (1 -1 h) v1 (E) - CP (0 $ (5) z P(E) 

We afterwards obtain the system 

s 9 ds + + 5 v [x (s) + 51) (s)] 

c . s ds + nfhY& (r;) + 2?!!-- s v [x (s) + QI (s)] ds = - + 
1+x 

(1.11) 

under the conditions 

S x(s)ds=O, S I/I (s) ds = 1 

The system (1.11) contains singular integral equations of the first and second kinds. A 

method for numerical solution of such equations, which is convenient for application of elec- 

tronic computers, is proposed and given a foundation below. 

2. We consider the singular integral equation (u and b are real numbers) 

ay (x0) -t + s ‘go dx = f (x0) 

x,,E(-1,1), a*+b'=l, b#O,f(s)EH(a) 

(2.1) 

It is known /13/ that the index x of (2.1) takes on the valuesl,o,-Iwhile the correspond- 

ing solutions have the form 

Y(Z) =w(r)cp(z), (2.2) 

(20 (z) = (1 - 2y (1 + zy, O<lal, IBI<l, 
x = -(a + p\) 

The number a is determined by the equation 

a + b ctg na = 0 

Let 1(x,) denote the left side of (2.1), and let the formula 

(2.3) 

b 

be the quadrature-interpolation formula of index x of order n for this function, where zi(i : 

1 n) are roots of the Jacobi polynomial P!?" 

Lion .' 0 (x), 'pn (Xi) = rp (Xi). 

(r) of degree ?z corresponding to the func- 

The polynomial PcnB'(z) satisfies the relationship /14/ 

dx = - 2-*+ r @)I? (1 -a)P~~;-P)(xo). 

Hence, the following equality is valid 

(2.4) 

We designate the function m(z) the approximate solution of (2.1) and find it from the 

equality of the functions I,(Q) and f(rO). The function y,(s) will be defined if we find 

the numbers cp,(.xi) (i = 1, . . ., n) with respect to which it is desirable to have a convenient 

system of n linear algebriac equations. Equating the functions 1,,(zo) and f(xO) atthepoints 

-rOj(j = 1, . . . . n -x), where Xoj are the roots of the polynomial Pi:$‘-B)(z), we obtain the fol- 

lowing system of linear equations 



b ” z ‘P, (‘i) ‘i 
-- - 

x zoj - zi 
= f (.zoj) 1 j=l ,...,n--x 

1-1 
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(2.5) 

Setting t0 = xi in (2.4), we note that the coefficient ai in (2.5) can be writteninthe 

form 

ai=-2-Hr(cz)r(1-cC) ~~;jj,I";' , i=l,...,n (2.6) 
n’ , 

Let us consider different values of the index x. 

Let x =O. In this case, the unique solution of (2.1) is extracted by giving the 

number a, O<I al<1 satisfying (2.3). If it is necessary to obtain the solution bounded at 

the point 1 and unbounded at the point -1, then a positive number ashould be taken. The 

polynomials P~"*R'(r) and P(l"'-B)(x)have an identical number of roots, hence, the system (2.5) nX 
contains n unknowns and n equations. 

Let x = 1. In this case -l<a,~<@, and the equation (2.1) has no unique solution. 

An unique solution can be extracted by the additional condition 

s y (x) dx = C (2.7) 

In this case the polynomial P~~$-p'(z) has the degree (n - i), hence the system (2.5) contains 

n unknowns and (n - 1) equations, i.e., it is indeterminate. Let us determine it by using 

discretization of (2.7), i.e., we consider the system 

~-&?&i& -- =f(zoJ, j=l,...,n-1 

i=l 

(2.8) 

Now, let x=-l. In this case the polynomial Pp;-"(r) has (n + lj roots, consequently, 

the system (2.5) is over-determined and, as a rule, incompatible. Hence, exactly the sameas 

in /6,7/ we consider the system 

-t&l - + 
R ‘p @.)a. c '-=f(XOj), j=l,...,n+l 

i=1 
%j - 3i (2.9) 

where y,,,, is the regularizing variable /15/. In case x= -1, it is also known that the 

solution exists only upon satisfying the condition (CC is detemlined by (2.3)): 

s f (4 
(I- z)a (I+ s)B 

dx=o; O<a, B<l, a+f3=1 

As in /7/, it is shown that the system (2.5) for x = 0, and the systems (2.8) and (2.9) 

are not degenerate, and also that Yon+O as n-too if and only if condition (2.10) is satis- 
fted. 

We have for values of (p,(xi) /7/ 

(2.11) 

Because of the representation of polynomials by the product of linear factors, and of 
(2.6). we obtain 
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I’“’ = 2*ai pm, PI 

x, i r (a) r (1 -a) * ’ 
i=l,...,n 

where PFs B, and P$,,-” are coefficients of the highest powers of the unknown in the approp- 

riate Jacobi polynomials. 

It is known /13/ that the function V(s) in (2.2) for the solution of the index x, is 
determined by the formula 

cp(") =a* - p 5 o ,;&;OdzZ) + T& (2.12) 

T1= - lr(a)r (I-a)]-*, To=T_,=O 

We consider equality (2.12) as an equation for the function t](z) = [o) (x)1-l/(x). If Y (x) 
is a solution of index x for (2.1), then the function r (x) will be a solution of index --x 
for (2.12) /13/. If we replace z by tO, w (z) by l/w(z), and PF1" (5) by PA1%-B'(z) in (2.4) , then 
the number b must be replaced by --h. We consequently obtain 

a P;;% -5) (I) b Pi:2 -0) (zo) dz, 
-- 

s 
zzz 

w (z) ?c 20 ~ 5 
2” r (-4 ,‘(I + a) bpp 0) @. 

Now let O(z) denote the function obtained from Z(x,,) by replacing ~(z)by q(z),!) by 

-b, xg by z. If @,,_,(z) denotes the function obtained from a(z) by replacing T)(Z) by v"-~(s), 

where Q-~(X) is determined by the roots zOj(j = I...., n-x) of the polynomial Pi12-') (z) is 
analogous to the function y,(s), then we obtain 

i = 1,. . ., n , 
PpB 8) (S@) 

bj=-22HI’(-a)I’(1 +a) , 
P (a, 7, 0) (ZOj) 

at the points si(i = 1, . . ., n) which are roots of the 

If again the representation of polynomials by a 

we obtain 

Ip”, = - 
Z-‘bj PC-a, 4) 

n-x 
r(-a)l?(l+a) 78’ 

polynomial P:a P) (x). 
product of linear factors is used, then 

j=l,...,n--_ 

Finally, we note that the equalities 

p”. B) . 1 b” r, 2-r.. - = 

pm -B) 1 r (4 r (I - ~4 r (- ~6) r (I + a) -5 
n--K 

are valid /16/. We thus obtain 

It is seen that -_[r (a) r (1 - a)]-‘v, = I’,. Therefore, (2.11) and (2.13) yield approximate 

values of the function cp(x)defining the solution v(z). If f( ) x is a polynomial of degree (n-x), 

then we obtain an exact value of the solution y (Si) -: 0 (Xi) qn (Xi). If f’ (x) E H (a), then it 

follows from the results of /17/ 

Iw(~i)-(Pn(Zi)l~O(E;,_,_,). i=l, . . . . ?L 

where E6_,_, is the best approximation of the function f’(z) by polynomials of degree (II-X - 1). 

Now we consider the equation 

"V (x0) + + 
s 
~~~+SK(z,~~)P(5)~~=f(~~) (2.14) 
z-z0 

where K(z,z,)~H(a) in C--1,11 x l-1,11. This equation also has a solution of index x ~ 1, 

0, -1, and is equivalent to the corresponding Fredholm integral equation of the second kind 

in each of the classes of solutions. Consequently, all the results obtained above for (2.1) 

are valid for this equation also. Systems of linear algebraic equations for (2.14) areobtain- 

ed from the corresponding systems for (2.1) by appending the term 

i$l K(si, +cp,(si)a~ i= 1,. .., n-x 

The results formulated above are also valid for equations of the first kind, i.e., when 



393 

we have a = 0 in (2.1) and (2.14). In this case CL and fi take on the values &'iz and the cor- 

responding Jacobi polynomials are expressed in terms of Chebyshev polynomials of the firstand 

second kinds. 

Fig.1 Fig.2 

3. The system (1.11) was analy- 

zed numerically for different stamp 

motion velocities on the basis of 

the method elucidated in Sect.2, for 

the following values of the paramet- 

ers: 

h = 35, 5 = 642 V,lcz, czz/cIs = 0.275, 
fi = 0.27, x = 1,807. 1O-6 V,/c, 

and the profile of the stamp base 

f (x) = 0.1 X2. 
The solid lines in Fig.1 showthe 

heat flux distribution QI = PAI 
(~u~)-~Q~' directed into thehalf-plane 

for the velocities V,/cz = 0.01 (curve 
I) and V,Jc, = 0.2 (curve Z), and the 

dashes are the heat flux distribution 

laws Qz = Phz(a2y)-'f& directed into 

the stamp at the same velocities. 

The values of the contact pressure at the points that are roots of the Jacobi polynomial 

&a,a-l) (x) (a = n-l arcctg p*,) are compared with values of the function 

-$- P (4 = (1-z,~;l+z,I- 
. * [5& + 2a (1 - a) - (1 - at) 5 - 21 

at these same points, which is an exact analytical expression for the contact pressure for an 

analogous problem without heat generation taken into account, as obtained by using the method 

of orthogonal polynomials. Comparison shows that the heat being liberated, although signif- 

icant in magnitude (Fig.l), has practically no influence on the contact pressure distribution 

(the difference does not exceed 0.03% for Vo/cz = 0.2). 
Contact pressure distributions and their regular parts are presented in Fig.2 for differ- 

ent velocities of stamp motion (the values V,icz = 0.44.10m5; 0.5; 0.8 correspond to curves 1,2,9). 
It is seen that as the velocity increases, the pressure drops in the middle part of the con- 
tact zone, and the stress concentration coefficients grow at the ends of the contact zone. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

The authors are grateful to S.M. Mkhitarian for formulating the problem. 
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